A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone.

نویسندگان

  • Sung-Wuk Jang
  • Xia Liu
  • Manuel Yepes
  • Kennie R Shepherd
  • Gary W Miller
  • Yang Liu
  • W David Wilson
  • Ge Xiao
  • Bruno Blanchi
  • Yi E Sun
  • Keqiang Ye
چکیده

Brain-derived neurotrophic factor (BDNF), a cognate ligand for the tyrosine kinase receptor B (TrkB) receptor, mediates neuronal survival, differentiation, synaptic plasticity, and neurogenesis. However, BDNF has a poor pharmacokinetic profile that limits its therapeutic potential. Here we report the identification of 7,8-dihydroxyflavone as a bioactive high-affinity TrkB agonist that provokes receptor dimerization and autophosphorylation and activation of downstream signaling. 7,8-Dihydroxyflavone protected wild-type, but not TrkB-deficient, neurons from apoptosis. Administration of 7,8-dihydroxyflavone to mice activated TrkB in the brain, inhibited kainic acid-induced toxicity, decreased infarct volumes in stroke in a TrkB-dependent manner, and was neuroprotective in an animal model of Parkinson disease. Thus, 7,8-dihydroxyflavone imitates BDNF and acts as a robust TrkB agonist, providing a powerful therapeutic tool for the treatment of various neurological diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The novel TrkB receptor agonist 7,8-dihydroxyflavone enhances neuromuscular transmission.

Neurotrophin signaling at the neuromuscular junction modulates cholinergic transmission and enhances neuromuscular transmission via the tropomyosin-related kinase receptor subtype B (TrkB).A novel flavonoid, 7,8-dihydroxyflavone (7,8-DHF), selectively activates TrkB receptors. Using TrkB(F616A) mice that are susceptible to specific inhibition of TrkB activity by 1NMPP1, we show that neuromuscul...

متن کامل

7,8-Dihydroxyflavone, a Tropomyosin-Kinase Related Receptor B Agonist, Produces Fast-Onset Antidepressant-Like Effects in Rats Exposed to Chronic Mild Stress

OBJECTIVE Brain-derived neurotrophic factor (BDNF) and its specific receptor, tropomyosin-related kinase (TrkB), play important roles in treating depression. In this experiment, we examined whether 7,8-dihydroxyflavone, a novel potent TrkB agonist, could reverse the behavioral and biochemical abnormalities induced by the chronic mild stress (CMS) paradigm in rats. METHODS SD rats were exposed...

متن کامل

O-methylated metabolite of 7,8-dihydroxyflavone activates TrkB receptor and displays antidepressant activity.

7,8-Dihydroxyflavone (7,8-DHF) acts as a TrkB receptor-specific agonist. It mimics the physiological actions of brain-derived neurotrophic factor (BDNF) and demonstrates remarkable therapeutic efficacy in animal models of various neurological diseases. Nonetheless, its in vivo pharmacokinetic profiles and metabolism remain unclear. Here we report that 7,8-DHF and its O-methylated metabolites di...

متن کامل

Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning.

OBJECTIVE Despite increasing awareness of the many important roles played by brain-derived neurotrophic factor (BDNF) activation of TrkB, a fuller understanding of this system and the use of potential TrkB-acting therapeutic agents has been limited by the lack of any identified small-molecule TrkB agonists that fully mimic the actions of BDNF at brain TrkB receptors in vivo. However, 7,8-dihydr...

متن کامل

7,8-Dihydroxyflavone, a Small Molecule TrkB Agonist, Improves Spatial Memory and Increases Thin Spine Density in a Mouse Model of Alzheimer Disease-Like Neuronal Loss

Augmenting BDNF/TrkB signaling has been demonstrated to be a promising strategy for reversing cognitive deficits in preclinical models of Alzheimer disease (AD). Although these studies highlight the potential of targeting BDNF/TrkB signaling, this strategy has not yet been tested in a model that develops the disease features that are most closely associated with cognitive decline in AD: severe ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 6  شماره 

صفحات  -

تاریخ انتشار 2010